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The role of temperature in classical nucleation theory is examined. It is shown that while even small
clusters are assigned a temperature in the classical theory, this must be a fluctuating quantity.
Stochastic simulations of cluster evaporation and growth are presented to track the temperature
fluctuations in time. The relatio| 5T|?)=kT3/C, for the mean square temperature fluctuation is
confirmed, where is the Boltzmann constanG, is the cluster heat capacity, afig is the bath
temperature. For small capillary drop®0-100 molecules the resulting rms temperature
fluctuations of 10°-20° might be expected to have a significant effect on the nucleation rate.
However, the simulations reveal a cluster temperature distribution that is centered several degrees
below T,. A theory is presented to explain this effect. To first order, which includes Gaussian
fluctuations of the cluster temperatuiie we find that the effective temperature for cluster
evaporation isT—h/2C,,, whereh is the latent heat. This temperature correction is precisely that
required by detailed balance and results both in a centering of the cluster temperature distribution on
T, and a cancellation of any significant effect of temperature fluctuations on the nucleation
rate. © 1995 American Institute of Physics.

I. INTRODUCTION by the cluster temperature distribution, exceeded the evapo-
) ration rate of the cluster at the temperature of the bath. The
The assignment of a temperature to small systems, OBycess evaporation, over that required to satisfy detailed bal-
the size of molecular clusters, is perhaps nowhere more ®%nce, resulted in the prediction of an unphysically laf2@
plicit than in the capillarity approximation of classical nucle- orders of magnitudereduction in the nucleation rafeThat
ation theory* This approximation can take on a number Of,conclusion has been tempered in more recent WoFke
corrected formg, pUt Its essence 1s t_hat a c[uster embryo Iﬁresent paper builds on results from a preliminary study of
modele_d as a liquid drofor solid particlg having the_ bulk emperature fluctuations in nucleation, in which the simula-
properties of the nucleated phase. Among these is a Welt-ion model described in Sec. IV was preserfted.
defined temperature, which is generally set equal to the tem- There are well-known difficulties in the assignment of

peratur_e of the surrounding vapor bath for corr_1p_ut|ng Cluste{emperature to small systems coupled to a heat'bathd
properties, but can be hotter than the bath at finite nUCIGatlogonsiderable controverdy?? Thus, when possible, the
rates due to the release of latent Hedhe capillarity ap- ' ' P '

proximation also includes assignments for the density, hear{"athOd of choice is to work within the framework of fluc-

capacity, surface tension, and evaporation rate, all in terms &ﬁanons in energy rather than temperature. However, within

the temperature of the drop. The notion of a cluster tempera{[— e framework of the capillarity approximation, it does not

ture is therefore well rooted in the classical theory and apMake & substantial difference which formulation is applied

pears to be required, at least until development of a fumpecause the bulk heat capacity provides a funqtional relation
molecular treatment of nucleation based solely on clusteP€Ween changes in temperature and changes in energy of the
energy. cluster embryo quelgd asa Ilqwd drq]bE(=C,_,dT). Con-

The role of temperature in classical nucleation theowsequently, the difficulties associated with the introduction of
has been examined from several directions. Studies dgmperature fluctuations in the capillary drop model will not
nonisothermal nucleation have shown that high nucleatiof?€ resolved simply by changing to an energy description. As
rates require the dissipation of the latent heat of condens&hown in Sec. I, a more substantial modification, in the
tion, resulting in an elevation of the cluster temperatureform of a correction to the evaporation rate of small clusters,
above the temperature of the bath, but the inclusion of thi¢s required.
effect does not significantly alter the nucleation rateThe In this paper we examine the role of temperature in
effect of temperature fluctuations on the nucleation rate hasucleation theory from the standpoint of fluctuations in both
also been examinétf. These latter studies attempted to in- the cluster temperature and cluster energy. When it becomes
clude the effect of fluctuations in cluster temperature abounecessary to adopt a statistical modelg., to evaluate the
the temperature of the batfi). The fluctuation distribution density of states of a small clustehe capillarity approxi-
was taken to be Gaussian and centeredTgn However, mation will be used. It is shown that if temperature fluctua-
since the evaporation rate increases exponentially with tentions are included, care must be taken in assigning the cluster
perature, it was observed that the evaporation rate, weightaémperature when the process under consideratég.,
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8984 R. McGraw and R. A. LaViolette: Classical nucleation theory

evaporation, molecular collisigrresults in transfers of en- Il. THE EFFECT OF FLUCTUATIONS ON CLUSTER
ergy that are an appreciable fraction of the cluster energfENERGY AND MASS BALANCE

itself. A similar situation has long been encountered in sta-
tistical descriptions of atomic nuclei in which temperature,arsion of clusters of sizg to sizeg+1, whereg is the
was introduced:-**“Here the emission of even one particle number of molecules in the cluster. The net flux takes the
constitutes a relatively large loss of energy, which reducesorm

the temperature considerably. Careful analysis reveals that

the temperature determining the energy distribution of emit-  J(9:9+1)=B1S¢fg= ¥g+18g+1fg+1, (2.7)

ted particles is not the temperature of the nucleus beforghereg, is the accommodation rate, per unit area of surface,
emission, but the temperature after emission has occtftredfor molecules of the condensable vapgy, ; is the evapo-

In the following sections we adapt similar methods and obration rate, a_ndsg and fg are the surface area and number
tain a similar result. We will find that to first order in size concentration, respectively, for clusters of sigd-or a vapor
correction the fluctuations are Gaussian and centeref,on accommodation coefficient of unity,

However, the temperature appearing in the Clapeyron equa-
tion for the cluster evaporation rate is shown to not be the
temperature of the cluster before evaporation of a moleculesherem; andp, are the molecular mass and partial pressure
occurs, as is usually assumed, but an average of the clustef the vapor species at temperatdreAt equilibrium the net
temperatures before and after evaporation has occurred. THisix vanishes to give the detailed balance condition as it
distinction is important when the cluster size is small. appears in classical nucleation theory:

In Sec. Il we present a description of detailed balance, as
it is used in classical nucleation theory, to derive the fluxes
for cluster evaporation and growth. When temperature flucwheren, is the cluster concentration at equilibrium.
tuations are introduced, without correction for the effects of ~ The equilibrium cluster concentrations are obtained, in
large fractional energy exchange, it is found that the detaileghe usual manner, from the reversible work required to bring
balance condition is violated; the average rate of evaporatiofPout their formation from the vapbiThis results in a de-
exceeds the rate of molecular accommodation, resulting in [rmination of the evaporation rate as
violation of-the second law. The resollutio.n of the problem isyg+1=,8189ng/(sg+1ng+1)
presented in Sec. Il through the derivation of the corrected

The evaporation rate enters into the net flux for the con-

B1=(2mmekT) *2p, (2.2

B1SgNg= Yg+1Sg+1Ng+1, 2.3

. . . i o

cluster evaporquon rate Qescrlbed earher. Irj Sec. IV we ap =,31(Sg/Sg+1)eXp‘ —In S+ = (Sgs1—Sg) ]
ply the capillarity approximation to simulations of droplet

evaporation and growth. Initially we calculate the evapora- :(sg/sg+1)(27rmlkT)*1’2pl(oo T

tion rate in the conventional manner without temperature
correction. In the absence of a carrier gas it is found that the
temperature distribution is shifted below the bath tempera-
ture by the precise amount required for detailed balance to 20
hold, nonetheless inconsistencies remain. Again the prob- z(sg/sg+1)(27rm1kT)‘1’2p1(oo,T)ex;{m_ vl),
lems are resolved when the corrected evaporation rate of Sec. g

Il is used. Then it is found that the simulated fluctuation 2.4

spectrum is centered on the bath temperaamdthe detailed  \here, beginning with the second equality, the capillarity
balance condition is satisfied. approximation is used. The equilibrium vapor pressure over
Distributions for temperature and energy fluctuations ina flat surface ig,(«,T), S=p,/p,(>,T) is the supersatura-
a capillary drop are derived in the Appendix using the Ein-tion ratio, ando is the surface tension. The last equality was
stein fluctuation formuld® A Carnot engine coupling be- obtained usings, ; —s;=dsy/dg for a cluster modeled as a
tween the drop and the bath is used to compute the reversibf®herical drop where is the g-cluster radius and is the
work required to shift the drop temperature from that of themolecular volume of the nucleating species. The last two
bath. For small values of the reciprocal particle size, thefdualities in Eq(2.4) show the required independence of the

fluctuations in both temperature and energy reduce to Gaussy aporation rate on the concentration of vapor. The last two

: : . actors in Eq.(2.4) give the Kelvin relation for the vapor
ian form and the fluctuations in temperature are centered on . L ) .
pressure in equilibrium over a surface with radius of curva-

the temperature of the bath. One consequence of working i rer,. Equation(2.2) shows that the condensation rate is
the Gaussian limit of large particle size is that it become%ropogrtional to the pressurp, of the surrounding vapor.
apparent that the fluctuation distributions are not required t@-qyation(2.4) shows that the evaporation rate is proportional
be non-Gaussian for resolution of the difficulties associategp the vapor pressure of the drop. A more complete discus-
with the preservation of detailed balance. Section V presentsion of the thermodynamic assumptions behind the transition
a discussion of these results. from Egs.(2.1) to (2.4) is found in Ref. 16.

From the Clapeyron relation

g
X ex T (Sg+1—Sg)
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R. McGraw and R. A. LaViolette: Classical nucleation theory 8985

dIn py(e,T) h In the Appendix it is shown that the average value of the
T 4T kT2 (2.9 reciprocal temperature, averaged oW{T), equals the re-
ciprocal of the temperature of the bafkq. (A10)]. This

whereh is the bulk latent heat per molecule and we obtainresult, together with the property that expliy/kT) is a con-
from Eq.(2.4), cave function forkk T<hy/2, which is well satisfied over the
temperature range of interefstee, also, the inequality fol-
lowing Eg. (2.7)], meets the requirements for Jensen’s
inequality*’ to hold. In the present case Jensen’s inequality
takes the form

dln'yg+1_ hd 1~hd 26
T dT KT 2Tk 29

wherehy includes the drop curvature correction

Y. (T cl
hg=h—20v,/r4 2.7) Ygr1(T)= Vg1 (2.10

For the special case th&(T) is approximated by a

and the last equality of Eq(2.6) follows for kT<2hy. Gaussian distributiofEq. (A13)]

[Equation(2.7) will require correction for the temperature

derivative of o if the latter is a strong function of.] The c, \? —C(T—Ty)?

curvature correction in Eq2.7) is less than 10% over the ( )E(ZWKTZ) %T)Efo(n,

size range of the 50—300 molecule water clusters studied in 0 0 (2.11)
the simulations. Thus we will neglechangesin curvature . .

correction with small changes @ to obtain whereC, is the heat capacity of the cluster afg{T) has

been defined for later use, an explicit version of E10
can be derived. Using the linear approximation for the expo-
J (2.8a nent of Eq.(2.8a,

e P R 2.1
T—O—$=ﬁg( —To), (2.12

h 1 1
_ .l d
Yo+1(T)=Ygs1 eXF{? (T_o_ f)

where hq

o
¥5+1="7g+1(To) (2.8D _ _ _ _

we obtain, upon evaluating the integral in Eg.9),

is the evaporation rate from E(R.4), evaluated at the tem-

perature of the bath. The superscript cl emphasizes that
yg'ﬂ is the evaporation rate, per unit area of surface, for a
cluster of sizeg+1 in the classical nucleation theory. Spe- . o
cifically, 7%, , is an approximation tay,. ; of Eq. (2.3) that which sapsﬂes EQ(Z':LQ'

g+l Mari . 7akl ; Detailed balance is the statement that for a system at
results after the capillarity approximation has been applied. = =" ys ¢
Temperature dependence has been omitted since it is und&duilibrium the rate of each process, however detailed, is
stood thatyg'ﬂ is evaluated only at the temperature of theexactly balanced by the rate of the reverse protess.the

bath. In the remainder of the paper it is shown that @) classical nucl_ef';ltipn theory, the_ fluxes for evaporation and
correctly gives the evaporation rate for an ensemble of clusgrow_th at equmbnum_ are described by the detailed balance
ters as a function of the temperature of the bath, but shoul§ondition. Eq.(2.3), with the rate of molecular accommoda-
not be applied to individual clusters coupled to the bathlion by all g clusters, in a unit volume, equal to the evapo-
Henceforth, we continue to ugg for the temperature of the 'ation rate ofall g+1 clusters, in the same unit volume,
bath and us@ exclusively for the temperature of a cluster €valuated at the bath temperatufg. The inequality de-
coupled to the bath in the capillarity approximation. Thescnbed by Eq(2.10 implies a violation of detailed balance

former is a constant, since the bath is assumed large, whi@”ce the rate of evaporation, averaged over the cluster dis-
the latter is a fluctuating quantity. tribution, exceeds the rate of molecular accommodati®ae

Equation(2.8) is tested in the simulation model of Sec. Ref. 10 for a discussion of related violations of the second

IV where it is used to evaluate the evaporation rate for cluslaw') Equation(2.10 shows that this violation occurs gener-

ters subject to fluctuations in temperature ab®yt How- ally a_n_d is not a consequence of the Gau_ssian approximation.
ever, even without simulation it is evident that there are dif-SPecifically, the rate of cluster evaporation exceeds the rate

ficulties inherent in applying Eq2.8) to individual clusters, ©f condensation by the exponential factor in EG.13,
as opposed to an ensemble of clusters. The major problerWh'Ch is about 1.15 for a 100 molecule cluster, and larger for
violation of the detailed balance condition, when fluctuationsSMaller clusters. The excess evaporation results in a reduced

in temperature and energy of the cluster are included, will?®t flux for conversion o clusters tag+1 clusters viaEq.
now be described. 2.1. This has a multiplicative effect on the nucleation rate,

Fluctuations in temperature and energy of a small Cap”_vvith a separate factor for each cluster in the sequence from

lary drop are described by the distribution functions devel-dimer thrglugh critical cluster size. The use gf.,(T) in
oped in the Appendix. The average evaporation rate, aveRlace ofyg,, in Eq. (2.3 is the main reason for the predic-
aged over the normalized temperature distributR¢T) of  tion of an unphysically large reduction in the nucleation

Egs.(A8) and(A9), is defined as rate®’

In the following sections we present a theory and an
analysis of the problem using a simple stochastic model.
There it is shown that the source of the difficulty lies in

- h3
Yo 1(T) =751 ex;{ W) : (2.13
v 10

79+1(T)=f Yo+1(T)P(T)dT. (2.9
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8986 R. McGraw and R. A. LaViolette: Classical nucleation theory

application of the conventional expression for the evapora-  exd (1/k)S(E—hg)] —hg dS —hy
tion rate used in classical nucleation theory. Simulation of extd (LK) S(E)] = F{ K E) = F(W ,
the evaporation and growth dynamicsiodlividual clusters (3.4)

is shown to require a new prescription for handling energy

exchange processes. Nevertheless, the conventional tre¥{hereT is the cluster temperature. The last term in E4)
ment is shown to remain valid for describing a canonicaldives theT-dependent factor in agreement with H@.8).
ensemblef clusters in equilibrium at the temperature of the NOt€, however, that the first equality in E(8.4) is only
bath. In other words, the classical theory already average@PProximate. Specifically, it fails when the energy trans-
over the canonical distribution in the derivation of Eqs4) ~ ferred is an appreciable fraction &. To address a more
and (2.8, which are based on Eq.3), so averaging again, general case we invoke the capillarity approximation, assign
as in Eq.(2.9), is superfluous and leads to erroneous results? (€mperature to the drop through the mappiihg T, and
The development of a general evaporation rate formula, suittit¢ the entropy change using the result obtained in the
able for individual clusters, is presented in Sec. Ill, whichAPPendix.[The last term in EQ(A8) is —ToAS, whereAS
establishes the theoretical foundation for interpretation of théS the entropy change for the transition frofp to T. Here

model simulation results presented in Sec. IV. we require the entropy change for the transition frénto
T—hy/C,.] Thus, for the exponent in E¢3.4), we obtain
Ill. THE EVAPORATION RATE OF SMALL CLUSTERS 1

= [S(E—hy)—S(E
This section will begin with an overview of the physics k (S @)~ S(E)]
resulting in a simple estimate for the evaporation rate of

individual clusters in the capillarity approximation. This is _S (T—(hg/C,))

=—1In

followed by a more general derivation using detailed balance k T
to obtain a formally exact expression for the cluster evapo-

. . . o C, hyg
ration rate. The simple estimate, which is adequate for the =_"2|n/1-
simulations of Sec. IV, is recovered as a special case of the k C,T
general rate law when the capillarity approximation is used. h 1/ h 1/ hy\2

. . : d d d

Averaging the new evaporation rate law over a canonical =-— KT + > (ﬁ) + 3 (C T) + (3.5

distribution of clusters generates the classical nucleation re-
sult. showing the correction to the exponent of Eg.4) as an
expansion in powers of the fractional energy chataydrac-
tional temperature changaccompanying the transfer of en-
The evaporation rate of a small cluster can be deterergyh,.

mined from the theory of unimolecular reaction rates applied  |f we are interested only in the lowest-order correction in

A. An overview of the basic argument

to the reaction: Eq.(3.5), we can write an equation similar in structure to Eq.
Agi1—AgtAs, (3.1) (2.8). First for the entropy change, we obtain

whereA, is ag-molecule cluster ané; is a molecule of the 1 —Ng

g 1 - —hy)— =9

vapor phase. The overall decay rate will be proportional to  k [S(E=hq)=S(B)] k(T—A) (3.63

the number of states available to the decay prodycti- with

vided by the number of states available to the reactqnt

in the energy rangdE.*® This ratio, A hg (3.85
wg(E—hg)  exd (1/k)S(E—hy)] 32 2C,’ '
wgr1(E) — exd(1/K)S(E)] ' Equations(3.6) result from comparison of terms through

lowest-order correction in E¢3.5) with the series expansion
dor right-hand side of Eq(3.6a. Comparison with the right-
hand side of Eq(3.4) shows that the lowest-order correction
appears as a temperature shift, which is inversely propor-
tional to the cluster size. Then instead of HG.8), the

whereE is the total energy of thg+1 cluster prior to evapo-
ration, plays the key role in the present analysis of the evap
ration rate for small clusters. In writing E.2), the Boltz-
mann relation

S(E)=k In w(E), (3.3 evaporation rate becomes
whereS(E) is the entropy of clusters having energy between hy [ 1 1
E andE+dE, has been used to obtain the cluster density of ya+1(T)Eygl+l ex;{? (T—— W” (3.7
0 d v

statesw. The use of the same entropy function in the nu-
merator and denominator of E.2) ignores the distinction where the asterisk denotes the modified evaporation rate. The
between clusters of sizgsandg+1. This is a good approxi- approximate equality refers both to use of the capillarity ap-
mation provided that is not too small. A more complete proximation and unfaithful representation of the higher-order
expression is given in the following section. terms present in the series expansion of E35. A more

In the limit thathy is small compared to the total energy complete derivation of Eq3.7) is given in Sec. Il B based
E, the entropy differences in E€8.2) may be approximated on its deduction from the general result obtained from de-
using the entropy derivative tailed balance considerations. Note that E37) can be in-
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for the Gaussian temperature distribution of E2311). Un-

like Egs.(2.4) and(2.9), Eq. (3.7) was derived without av-
eraging over an ensemble of clusters. Therefore, it can be
applied to individual clusters following the assignment of a
temperature to the cluster using the capillarity approxima-
tion. That temperature must be a fluctuating quantity on ac-
count of the small cluster size and averaging over its distri-
bution is no longer superfluous and, in many applications,
may be required. For example, to make contact with classical
nucleation theory we must average the modified rate over the
canonical ensemble. Equati¢8.8) shows that the averaged

i rate satisfies detailed balance and agrees with the rate from
o2 ¢ classical nucleation theory. Equati@®7) will be tested fur-

1 I ) T T
0 50 100 150 200 250 300 ther in the simulations of Sec. IV.
CLUSTER SIZE (g)

0.8+

'Y*g+1/ Yg+1
o
T

0.4

B. Detailed balance

FIG. 1. Evaporation rate as a function of cluster size in the capillarity The detailed balance condition qu 3), can also be
approximation. Results are for water clusters in the size rapg0—300 ' S

molecules aff =300 K. All curves are normalized to the classical ensemble use.d to derive the d'ﬁerent"_ﬂl evaporation rate, which We
rate expression of Eq2.8). Dashed horizontal line, Eq2.9); solid curve,  define as the rate of evaporation when the cluster energy is in
modified rate for individual clusters from Eg3.7). Circles, result from  the rangeE to E+dE. Considering only that subset gft-1

evaluation of the logarithm in E¢3.5) (so as to properly include the higher lust PR ;
X ' : — rs wh nergy lies in this range, EY m
order terms in the series expansionhe dotted curve results from a similar clusters 0S€ energy lies S range 3) becomes

comparison that neglects the curvature correction to the heat of vaporization SsNg(E—hy) =%, 1(E)Sgs1Ng+1(E). (3.9
from Eq. (2.7) in both the classical and modified rate expressions. P 9'e d Yor1 g+1g+1

Solving for the differential evaporation rate we obtain
SgNg ( ng(E—hd)/ng)
ng+1(E)/ng+1

*
L . . E)=
terpreted as assigning an effective evaporation temperature vr1(B)=51

in Eq. (2.8), which is equal to the average of the cluster

Sg+1ng+1

temperatures before and after evaporation of a monomer has = Yar1 ng(E_—hd)/n@l (3.10
occurred. 9" g4 1(E)/ngq
A comparison of the evaporation rates from E(&8  wherey,,, is from Eq.(2.9). Like yg'+1, which resultsafter

and (3.7, and from the full series expansion based on Edinvoking the capillarity approximationy,. ; is applied only
(3.9), is shown for fixed temperature in Fig. 1 as a functionat the temperature of the bath. Noting that the denominator in
of cluster size. It is seen that the ensemble averaging dfq. (3.10 gives the probability for ay+1 cluster to have
classical nucleation theory gives large overestimates for thenergy in the rang€& to E+dE, it is easily shown that Eq.

evaporation rates of individual small clusters. In the large<3.10 satisfies detailed balance after integration over the
cluster limit, fluctuations in the canonical ensemble becomeluster energy distribution. Thus,

negligible and the two approaches converge to the same re-

sult. The figure also shows that E(B.7) is an excellent 7;H(E):j 7§+1(E)P(E)dE
approximation to the result obtained using the full series ex-
pansion of Eq(3.5 for clusters larger than about 20 mol- ng(E—hg)/ng\ ng. 1(E)
ecules. For smaller clusters, other approximations introduced = Yg+1J ( ) dE

. . . . g . ng+1(E)/ng+1 ng+l
with capillarity drop model begin to fail, including several
approximations used in the derivation of Eg.4).1° ng(E—hy)

Detailed balance is satisfied when H8.7) is used in :79+1f Ng dE=vg+1. (3.1

Eq. (2.9 and the integration performed as in E@.13.

Thus, we obtain To evaluate the cluster distributions appearing in Eg.

(3.10, it is convenient to use the grand ensemble. Summing
over all states in the energy rangeo E+dE, and using Eq.

YVora(T)= f Vert(Mfo(MAT=7g}4 38 (3.3 gives

ng(E—hq)  exd (1/k)Sy(E—hg)]Jexd —(E—hg)/kTo]lexp(gu, /kTo)

= . 3.12
ng-1(B)  exii(1/K)S,.1(E) Jexp— E/KTo)exfi (g + 1), /KTo) (3.123
Furthermore,
n ex +1)p, /KT, Y
g+1:qg+1 d(g ) O]:qg+1 ex;< M ), (3.120
Ng dg exdgu, /kTo] dg kTo
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8988 R. McGraw and R. A. LaViolette: Classical nucleation theory

where u, is the molecular chemical potential of the vapor turning to Eq.(3.15), we note that the entropy factor is iden-
and g4 is the canonical partition function for a stationary tical to the right-hand side of Ed3.2). Using either Eqgs.
cluster of sizeg. Substitution of Eqs(3.12) into Eq. (3.10 (3.5 or (3.6) for the entropy differences and making the
gives replac:ements'yg'+l for yy41 @andT for E, gives the modified
evaporation rate in terms of the cluster temperafur&pe-
Y1 (B)=yg41 Gg-1 €XAL(1/K)Sy(E—hg) Jexphy/kTo) , cifically, the use of Eq(3.6) for the entropy difference gives
9 g dg exH (1/k)Sg1(E)] immediate recovery of Eq(3.7). The latter, in turn, ap-
3.13 proaches the classical ensemble rate of 8 when the
showing the required independence of the evaporation raféactional energy exchange is sméfig. 1).
on u,. Equation(3.13 is a formally exact expression for the

evaporation rate of a cluster of energy
The capillarity approximation can be used to evaluatdV. A STOCHASTIC MODEL FOR FLUCTUATIONS

the right hand side of Eq3.13. Thus, for examplé® DURING EVAPORATION AND GROWTH

—kTo In 0g=gu+0sq, (3.19 In this section we develop a direct approach to tempera-
] ] ] o ture fluctuations via the simulation of a specific coupling
where, is the chemical potential of the bulk liquid and the hanne| between the cluster and the bath. The bath consists
remaining quantities are as previously defined. Equationgs 4 |arge nondepletable reservoir of vapor at fixed tempera-
(3.12h and(3.14) give the ratio of equilibrium cluster popu- y,re and pressure. The coupling to the bath is through the
lations, at the temperature of the bath, in agreement with EGyaporation and condensation of vapor molecules. The es-
(2.4). For cluster sizes that are not too small, e99+20, itis  gentia| features of the capillarity approximation used in the
a good app_roxmatlon to_neglect the dlstlnc_non betweermylation are the following(1) Its mapping of physical
clusters of sizeg andg+1 in Eq.(3.13 to obtain clusters into spherical drops having bulk thermodynamic
1 hg properties including well-defined values for surface tension,
Yo+ 1(BE)=7vg41 exp[ K [S(E_hd)_S(E)]] ex;{ ﬁ) temperature, heat capacity, ef2) Fluctuations in drop size,
0 energy, and temperature are included through direct simula-
1 tions that incorporate the fundamental statistical character of
= Yg+1 exp[ - k_To [W(E_hd)_W(E)]]’ 3.15 evaporation and growth processes while neglecting the de-
tails of molecular interaction.

whereW is the Helmholtz free energy. o ) )
As in Eq.(3.12), it is readily found that the differential A. Description of the model for a single coupling
evaporation rate defined by E(.15 satisfies detailed bal- channel
ance after averaging over the cluster energy distribution. The To focus the present analysis, we limit the model to a
distribution function for equilibrium fluctuations in the en- single coupling channel, or mode of energy exchange, be-

ergy is given by Eq(A11) thus tween the cluster and the bath. Thus we neglect in the simu-
lations, but not in the qualitative discussion, the effects of

W(E) o - o
P(E)=K exp — , (3.1  collisional and radiative energy transfer. Radiative transfer
kTo has a negligible effect under conditions similar to those of

whereK is the normalization constant for the energy distri- the present calculation@), but the stochastic model can be

bution. Carrying out the integration, as in E€.11), we used to include radiative transfer for other applicati®ec.
obtain V). Energy transfer through collisions with background gas

and/or noncondensing vapor species has important implica-

— = * 1 tions for the model and will be discussed. For example, it
Yg+1(B)= 79+1thd exp[ T kT, [W(E=hq) will be shown that the modified evaporation rate for small
clusters results in a distribution of fluctuations in temperature

—W(E)]] exr{ 3 W(E)> dE or energy that is invariant to the fraction of energy dissipated

kTo through nonaccommodating collisions, while for the unmodi-

fied evaporation ratfEq. (2.8)] this is not the case.
* W(E—hq) The major advantage of working with the single channel
= v+ 1K exd — dE e major advantage of working with the single channe
hg kTo model is that a single component cluster is constrained to be
in stable equilibrium with its environment and good statistics
o W(E) : ith it in ol ; h
= y411K | exp — ” dE can be obt'alned Wlt' out drift in cluster energy or size. Eac
To condensation step increases the energy of the cluster by an
7 amount equal to the latent heat. This, in turn increases the
evaporation rate and, therefore, the rate of energy removal.
The lower limit in the first two integrals is set by the require- Similarly, each evaporation step decreases both the cluster
ment of positive energy and the last integral uses the variablenergy and evaporation rate, and, therefore, enhances the
substitutionE=E—hy. relative probability that the next event will be a condensation
Equation(3.7) is recovered as a special case of the genstep. Consequently, in this model the cluster is stable, fluc-
eral rate law when the capillarity approximation is used. Retuations regress, antl is a function of the cluster size:

= Yg+1- 3.1
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h 106
T=To+ & (9= 9o). (41

Heregy is the initial cluster size at the temperatUrgof the
bath.

Rules for updating the simulation model are as follows: 100
Both growth and evaporation are modeled as Poisson distrib-=
uted processes by maintaining the computational time stepy gg-
(7) sufficiently small that the occurrence of either multiple Wl
growth or multiple evaporation events, within any single « 96-
time step, is a rare event. The growth sequence is simulatedS
using Poisson arrival times for monomer at a fixed mean rate 94 T T T T
(per unit area of cluster surfacgetermined by the molecular 0 20 40 60 80 100
accommodation frequency through E@.2). A vapor ac- TIME (ns)
commodation coefficient of unity is assumed. The evapora-

tion sequence is also simulated using Poisson statistics, but . . . .
FIG. 2. Fluctuations in cluster size versus time. Results obtained from the

here the unit area departure !'at.e Var!es depending on tkl:‘f"ochastic condensation/evaporation simulation model for an initial cluster
temperature of the drop. We will investigate both E@S8)  of 100 molecules in equilibrium at a bath temperature of 300 K.

and(3.7) for determining the temperature dependence of the

evaporation rate. Finally, the energy and temperature of the

drop are updated after each growth or evaporation event. 20

Each condensing molecule addgto the energy of the clus- P1=Pa(rg.To)= pl(oo,TO)ex;{r kT, Vl)

ter andhy/C, to its temperature, while each evaporating ) ’ )
molecule removes these amounts. Diffusion of heat withirfvaluated ag=go. _Equatlorc15(2.4) and(2.8b determine the
the cluster is assumed to be sufficiently rapid, relative to th&lassical evaporation ratgg. ,, which is the prefactor in
time interval between successive growth/evaporation event§ds: (2.8 and(3.7). o . _

that the temperature within the cluster is uniform. This com-  Figures 2 and 3 show statistically independent time se-

pletes the rules for implementing the single-channel stochagluences for temperature and number of molecules, respec-
tic model. tively, in a drop undergoing evaporation and growth. Initial

conditions are a cluster size of 100 molecules in equilibrium

at the bath temperature, 300 K. The regression of fluctuations

that results from cluster stability is clearly evident in the
B. Simulation results figures, as are the quantized jumps in number and tempera-

Calculations are presented here for water clusters in th&Ire, corresponding to integer valuesgin Eq. (4.1). Accu-
50—300 molecule size range. These clusters are sufficientkate estimates of the fluctuation variance, and quantitative
large that fractional changes in size can be neglected, bd@sts of the different expressions for the evaporation rate,
small enough to be in a range where the studied effects caRds. (2.8 and(3.7), require a level of statistical resolution
be easily seen. For a cluster size of 11 moleculég,at300  that can only be achieved when much longer time sequences
K, AT/T=0.1, whereAT is the standard deviation of the are examined. These results are reported in Figs. 4-6.
temperature fluctuatiofiEq. (A14)]. For a cluster size of thir-
teen molecules we findS/S=0.1 for fluctuations in en-
tropy, taking the bulk liquid entropy value at this temperature
from Ref. 19 for the capillary drop. Thus the relative tem-
perature and entropy fluctuations of the simulated clusters ~
are less than those encountered in statistical models of thek 310
nucleus where the temperature concept has been empibyed. E

Poisson statistics is achieved by settingqual to 1/40 [ 00
of the average time between collisions of the vapor with the &
cluster surface. Simulation results were found to be indepen- =
dent of this setting for values af below about 1/10 of the 0 2907
average collision time. Separate random number sequences_]

CLUSTER
s o
no B
h 1

4.2

generated using the programan2,?’ are used to decide O 280+

whether an evaporation or growth event takes place within I T T T

each successive time step of the simulation. Bulk liquid wa- 0 20 40 60 80 100
ter properties required in the capillarity approximation are TIME (ns)

from Ref. 19. Equilibrium is achieved by setting the vapor
pressure used to compute the molecular accommodation ratl—qG. 3. Fluctuations in cluster temperature versus time. Conditions are the

via Eg. (2.2), equal tO. the vapor pressure of the drop. Thesame as in Fig. 2. The fluctuations are uncorrelated with those shown in Fig.
latter follows the Kelvin relation 2 due to the use of a different random number generator seed.
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& =i
5 1.0 8 .10
Y T
0.054
0.5
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0.004
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50 100 150 200 250 300 270 280 290 300 310 320 330
<g> TEMPERATURE (K)

FIG. 4. Temperature fluctuations versus cluster size. The smooth curve igig 6. Same as in Fig. 5 except for an initial cluster size of 100 molecules.
k/C,, the circles are the simulation results. Each circle represents a time

sequence of approximately 5000 random evaporation/condensation steps ob-
served over a period of 200 000 computational steps.

2.8) or (3.7) is used. Figure 4 was obtained using the modi-
ied evaporation rate, E¢3.7), which gives excellent agree-
ment with the theoretical curvdA slight, systematically
ositive, deviation from the theoretical curve was observed
hen Eq.(2.8) was used.

More interesting are the temperature distributions them-
elves. These are shown in Fig. 5 for an initial cluster size of
50 molecules and bath temperature equal to 300 K. The
(| 5T|2>=kTg/cV_ 4.3 crosses, joined by the dashed line segments, result using Eq.
éZ.S) for the evaporation rate. Here we show the normalized

Figure 4 shows the mean-square temperature fluctuatio,
as a function of the average cluster sizBor any given
simulation run, there is essentially no difference between th
average and initial cluster size on the scale of the figure, s
we approximate the average cluster size by the initial size,
0o-) The observed fluctuation variance is seen to follow the

. : ; S
standard theoretical relatidi\ppendi:

Each circle represen'.[s the statistics gamered from a tlmg SHistribution resulting after 200 000 computational time steps
guence of approximately 5000 random evaporation ré

. . again approximately 5000 random evaporation/conden-
cond_ensatlc_m events Ob?ef"ed over a period of 20.0 000 co ation events Note that the average temperature appears to
putational time stepgThis is on the order of 1Qs in real

time for the 50 molecule clust hich i I b dth be shifted by the amourk from Eqg. (3.6b), equal to about
ime for e molecule ciuster, which 1s well bEyond the q 5 e point spacing seen in the figubslowthe tempera-
range of full molecular dynamics simulatigriChe fluctua-

. . . . " ture of the bath. The circles result from a similar calculation
tion variance is not particularly sensitive as to whether EquSing the modified evaporation rdq. (3.7)]. The solid line

segments connect points obtained from the theoretical fluc-
tuation distribution[Egs. (A8) and (A9)] evaluated at tem-
peratures corresponding to integer valuegdh Eq. (4.1).

0.30 Figure 6 shows similar results for a 100 molecule cluster, but

0.25 with less prominent differences between the corrected and

€27 uncorrected distributions, as expected from a doubling of
C,.

0.20 v

Several comments can be made about these distributions.
First, all of the simulated distributions satisfy detailed bal-
ance for the corresponding evaporation rate. The distribu-

FREQUENCY
[
o
]

0.107 tions resulting from Eq(2.8) satisfy detailed balance at the
0.05- expense of an unphysical shift to temperatures below the
temperature of the bath. The distributions of Figs. 5 and 6 are
0.00=tt=="" non-Gaussian. However, the cluster sizes are not so small
260 280 300 320 340 360 that they are far from the Gaussian limit and it is instructive
TEMPERATURE (K) to examine this case. Then the theoretical distribution for

fluctuations in temperature follow§y(T), defined in Eg.
(2.1, and it is readily shown that the following integral

FIG. 5. Temperature fluctuation distributions for an initial cluster size of 50 jqentities hold: First, using the modified evaporation rate,
molecules. Crosses result when the classical expression for the evaporation

rate[Eq. (2.8)] is applied to the simulated cluster. Circles result using the

corrected evaporation rate Iqq. (3.7)]. The solid line is the theoretical * T = * Tf(T)dT= cl 4.0
result derived in the AppendijEgs. (A8) and (A9)]. 79”1( ) 79+1( )fo(T)d Yg+1 (4.4
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where v* is from Eq. 3.7[this is Eq.(3.8)]. Shifting the Ill is not limited to this case and should be applied even
variable of integration we obtain whenhy represents a quantity of energy transferred by other
mechanisms, including collisional energy transfer, that

Yo+ l(T)=j Yo+ 1(THA)Fo(T+A)dT couple the system to the bath.gfdoesn’'t change during the

transfer, Eq(3.19 can be used.
:f Yg+1(Tfo(T+A)dT= '}’;l+1v (4.9

where in the last equality is from Eq.(2.8), but the tem- V. SUMMARY AND DISCUSSION
perature distribution has been shifted to lower temperatures

by the amount In this paper we have shown that although fluctuations in

cluster energy and temperature are not included explicitly in
_ Ny the classical nucleation theory, which considers all clusters in
- 2C, equilibrium at the bath temperature, they are properly ac-
counted for through the equilibrium assumption implicit in

from Eq. (3.6b. Equations(4.4) and (4.5 give an excellent . o
description of the effects seen in Figs. 5 and 6. In particularthe detailed balance condition, E@.3. Consequently, the

. . tlassical expression for the evaporation rate that appears in
the last equality of Eq4.5) supports the shifted temperature i ;
distributions shown by the dashed curves in Figs. 5 and 6. Egs.(2.9), (2.4), and(2.8) must be interpreted as applying to

an ensemble of clusters in equilibrium at the temperature of
the bath. Difficulties, in the form of detailed balance viola-

C. A qualitative description of the effects of a tion, arise when the attempt is made to apply this form to
background gas individual clusters. Nevertheless, the need to determine the

When the conventional evaporation rate expression, Eqgvaporation rates for individual clustefsr groups of clus-
(2.8), is applied to individual clusters, as in the dashedters having the same enejgig evident. Examples include
curves of Figs. 5 and 6, the time-average cluster temperatugudies of individual clusters, as presented in Sec. 1V, and
is shifted below the temperature of the bath. In this caséonisothermal nucleation processes where there is a need to
energy transfer by collisions with a noncondensable backtrack fluxes in both cluster energy and cluster size. In these
ground gas will tend to restore the cluster temperature to thatases it is meaningless to first average over energy, so the use
of the bath, favoring increased evaporation and, therefore, @f Eg. (2.8), e.g., which implies such an average, is not ap-
reduction in the nucleation rate. In the high pressure limit wepropriate and can lead to erroneous results.
would expect the distribution to center on the bath tempera- Simulation of the evaporation and growth dynamics of
ture and Eq.(2.13 would imply extreme reductions in the individual clusters has been shown to require a new prescrip-
nucleation rate, following the discussion presented in Sec. Iition for handling energy exchange processes that results in a
Such effects are not supported by recent experiments, whic#ifferent evaporation rate law from that encountered in clas-
indicate little or no influence of background gas pressure oical nucleation theory. Only in the limit that the energy of
nucleation raté!=23 Even more seriously, one can deduceﬁXChal’lge is a small faction of the total available cluster en-
from the situation just described, the existence of a cyclicergy are the two forms equivalent. A major result of the
process at equilibrium with a step that includes unidirecresent study has been the development of a formally exact
tional net energy transfer from the background gas to th@xpression for the single-cluster evaporation réfeg.
cluster—in violation of detailed balanéd. (3.13]. The approximate evaluation of this expression in

From the preceding analysis we conclude that while EqSec. Ill is a new application of the capillarity approximation,
(2.8) can be made to satisfy detailed balance in the absendeamely, its use to determine the evaporation rate of small
of collisional energy transfer, it cannot be a valid expressiorelusters without ensemble averaging. The new rate law re-
for describing energy transfer processes involving singl€luces to Eq(3.7) for ready evaluation and testing in the
small clusters, or groups of small clusters where averagingimma'[ion model. The single-cluster rate expressions enable
over the canonical distribution is incomplete_ For this pur-One to recover the classical nucleation result for a canonical
pose Eqs(3.7) or (3.13 should be used. Then the distribu- ensemble of clusters by averaging over the distribution—the
tion of cluster energy at equilibriunfover time will cor- detailed balance condition is always satisfied. Thus we may
rectly satisfy the canonical Boltzmann distribution law, andreplace the classical evaporation term in E&.3) (yy41)
be invariant to the specific nature of the coupling chafshel with the explicit averaged valueyg+ 1) since these are equal
between the cluster and the bath. Thus, for systems in stabfer the modified cluster evaporation rate as shown by Egs.
equilibrium, inclusion of a background gas will have no sig-(3.11) and (3.17), or by Eq.(3.8) in the capillarity approxi-
nificant effect on cluster fluctuations or on maintenance ofmation.
the detailed balance conditiotAt extreme gas pressures The second result of this paper has been the develop-
there will be a vapor pressure increase but this effect is germent of a stochastic simulation model for describing cluster
erally not included in the classical thegryhus Eqs(3.7) or ~ evaporation and growth statistics in the capillary approxima-
(3.13 can be used, whether or not additional coupling chantion. Despite its current application to a single coupling
nels are included in the model. Similarly, has until now channel, the model is successful in resolving differences be-
referred specifically to the energy exchange accompanyintveen the evaporation rates given by E@s8) and(3.7) and
an evaporation or condensation event. The analysis of Sem reproducing the fluctuation spectrum, as derived from the

A
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8992 R. McGraw and R. A. LaViolette: Classical nucleation theory

Einstein fluctuation formula in the Appendix, when the ever, since the correction is purely kinetic, the equilibrium
modified rate from Eq(3.7) is used. cluster populations will be unchanged and any effect on the
With further development, the stochastic model will unit-area evaporation rate of E(R.4) must be small. How
likely prove advantageous for extension to multicomponensmall it is will depend on how one applies the correction to
systems with multiple coupling channels. For multicompo-the surface area available for evaporation. If the added-shell
nent systems, it is well known that stable equilibria betweerstructure, shown in Fig. 1 of Ref. 29, is interpreted as a

a drop and its vapor can occur. Indeed, this stability plays dransition state for the reaction described by 8q1), then it
major role in determining the optical properties of atmo-seems natural to replace the ragjgs, , ; by unity in the first
spheric aerosols and activation processes in clouds. Considequality of Eq.(2.4) to correct the evaporation rate. For a
for example, a two-component drop consisting of a nonvola50-molecule cluster, this is on the order of a 1% change. The
tile solute in water. This drop coexists in equilibrium with stochastic model simulations will be affected by the in-
water vapor along the stable branch of the Kohler curve thagreased condensation/evaporation rates that result from aug-
describes the size of the drop as a function of relativenenting the surface area factors in Eg.1). Mainly there
humidity?® Another example, although not a case of truewill be a slight compression of the fluctuation time scale of
stability, is provided by sulfuric acid-water clusters in binary Figs. 2 and 3(by about 20% due to the faster rates for
nucleatior?®?’ Here the exchange of water vapor is fast€vaporation and growth. The fluctuation distribution results
compared with exchange of sulfuric acid, which is generallyshown in Figs. 4—6 will be unchanged.

present in only trace amounts. As a result, clusters are in

local equilibrium with respect to evaporation and condensaackNOWLEDGMENTS

tion of water vapor. Recent work suggests that fluctuations

become large at boundaries between stable and unstable This research was supported in part by NASA through
branches of the Kohler cun?é The stochastic model should interagency agreement number W-18,429 as part of its inter-
provide an ideal tool for simulating such fluctuations. With disciplinary research program on tropospheric aerosols and
further extension, which will likely include some coarse Was performed under the auspices of the United States De-
graining of the fluctuations, the model should prove usefuPartment of EnergyDOE), under Contract No. DE-AC02-
for statistical simulations of heterogeneous nucleation pro?6CH00016 and in part through the INEL Long-Term Re-
cesses in clouds. These systems will be the subject of futurgé@rch Initiative under DOE Idaho Operations Office
studies. Contracts Nos. DE-AC07-76ID01570 and DE-ACO7-

A final interesting consequence of the simulation mode241D13223. Discussions with Dr. Stephen E. Schwartz of
is seen in Fig. 4. Here the model successfully predicts th&rookhaven National Laboratory are gratefully acknowl-
variance of the temperature fluctuation given only the as€dged.
sumption of Poisson statistics and the Clapeyron temperature
dependence of the evaporation rate. This result implies ApPPENDIX: THE DISTRIBUTION OF TEMPERATURE
fundamental connection between Eg.3) for the fluctua- AND ENERGY FLUCTUATIONS FOR SMALL
tions, Poisson statistics for the arrival and departure of molSYSTEMS COUPLED TO A HEAT BATH

ecules, and the Clapeyron temperature dependence of Egs. In this Appendix we first calculate the reversible work

(2.8 and(3.7). As a further test of the model, similar calcu- .
: i L ) . required to change the temperature of a small system from
lations were carried out for radiative transfer with absorption

e . . that of the bath to which it is coupled. The Einstein relation
and emission of photons serving as the coupling chann%

. 5), connecting the probability of a fluctuation in a variable
betv_veen the partlple and the bath. quaﬁ@ﬁ) for the fluc- x with the reversible work required to produce that fluctua-
tuations was again found to be satisfied. However, the ratets

of photon emission from the particle were found to be con-'on through the application of external constraints, is then
sis‘?ent with the Wien distribu?ion law—the high frequency used to obtain the probability distribution function for fluc-

P o ) tuations, wherex is either the temperature or energy of the
form of the Planck distribution[The Wien law gives a P 9y

; ture-d dent phot . te similar t Esystem. We will focus on the temperature fluctuation distri-

;rgpera uret- tr?ptetnh enhpt oton emission rate _S|m|| ar Of %ution to obtain the theoretical curves shown in Figs. 5 and
(2.6, except that the pnoton energly appears In place ot ¢ pe energy fluctuation can be obtained from the tempera-
hy on the right-hand sidéThis result was determined to be

. . s _tHre fluctuations using E=C,dT.
a consequence of the assumption of Poisson statistics, whic To derive the reversible work we imagine a Carnot en-
for photons is valid only in the shot limhv>KT.

Duri hi Ki b h . h gine providing the coupling between the system and the bath
uring this work it was brought o our attention that a? depicted in Fig. 7. This is used to bring the system to a

several authors have suggested a modification to the CIaSSict%mperatureT which can be either less than or greater than
nucleation kinetic$Eqg. (2.1)] by noting that when molecules the bath tem,peraturféo. For the case thaE is less tharfT,
condense on a curved surface, the area available for Conde(b'ase 1 of Fig. Ythe condition of reversibility requires
sation is not the area of the surface itself, but the larger

exterior area of an added outer shell of thickness equal to the Q Q

molecular radiug®?° This correction will not effect the ratio AS=-——T+ To 0. (AD)

of the modified to classical expressions for the evaporatio - . . .

rate (Fig. 1), which results from the theory presented here,rbOmblnlng this result with the first law

but it may have an effect on the classical rate itself. How- Q;+W=Q,, (A2)
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FIG. 7. Carnot engine coupling of a small system to a heat bath. 1
=T (A10)

which is a special case of a more general identity established
in Ref. 10.
The distribution of energy fluctuations in the canonical

gives the usual result for the Carnot efficiency
_ W Tp-T

7T =09, T (A3) ensemble follows the Boltzmann fotth
where the superscrifgt-) signifies the cooling cas@ <T,, S(E) E
d T<0). Applying this last result to differential changes inthe ~ P(E)=K; ex v s ﬁ)
heat and work gives °
W(E
=K, exp — ( )), (A11)
dQ;= dw=-C,dT. (A4) kT,

TO_T
whereK, is the normalization constant, the density of states
has been written in terms of the entropy, as in E§<2) and
(3.3, and the definition of the Helmholtz free energy

A similar analysis for heatingT>T, and dT>0) corre-
sponding to case 2 of Fig. 7 yields

LW T-T, (W=E-T;,S) has been used. Note that E411) is a gen-
7709, (AS) ! ion that d ire the capillari -
-Q; T eral expression that does not require the capillarity approxi
mation.
and For large clustersC, is large and the distribution of
fluctuations is sharply peaked about the bath temperdigre
_dleT—TO dw=C,dT (AB) Itis useful to consider the first-order approximatiorPter)

. . o valid when the fluctuations about the bath temperature are
in place of Eqs(A3) and(A4), respectively. Thus, in either small compared to the bath temperature itself. Then expan-
case, heatingEq. (A6)] or cooling[Eg. (A4)], we have sion of the logarithm in Eq(A8) and noting the cancellation

To—T of the linear terms gives
dW=—CV( T )dT. (A7) 1c,
, : , , : W(T)=5 — (T-Ty)?, (A12)
The reversible work is obtained by integrating E47) from 2Ty
Toto T to obtain where the approximate equality signifies the neglect of
T higher terms from the expansion. Substitution into EP)
W(T)= L —C(To—T)/T dT yields a Gaussian approximation for the distribut®¢r):
0
C, \"* [-C(T-Ty?
=C,(T-To)+C,To In(To/T), (A8) P(T)=| —~ o o Al
° ° e (M 27kTg 2kT§ (AL3)

which is equal to the Helmholtz free-energy change.
The Einstein relatiorf15) gives the temperature fluctua- which is valid for|T—T,|/To<1. Equation(A13) results in
tion distribution as the standard expressions for the mean-square fluctuations

P(T)=K, ex — W(T)/kT,], (A9) (variance in temperature and energy:

where K is a normalization constant. EquatigA9), with (|8TI%)=KT/C,,
W(T) from Eq.(A8), was used to obtain the theoretical dis- (| SE|2)=KTZC, .
tribution curves shown in Figs. 5 and 6. The distribution has o=
the property that the average value of the reciprocal temperdor larger (non-Gaussianfluctuations Eqs(A8) and (A9)
ture equals the reciprocal of the bath temperature. Thus, should be used.

(A14)
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